1. J. Li, Z. R. Zhang, X. J. Guo and Y. Yang, “The Studies on Structural and Thermal Properties of Delithiated Li
xNi
1/3Co
1/3Mn
1/3O
2 (0 <x ≤1) as a Cathode Material in Lithium Ion Batteries”, Solid State Ionics, Vol. 177, No. 17-18, pp. 1509-1516 (2006),
https://doi.org/10.1016/j.ssi.2006.03.055.
2. P. Ping, Q. Wang, P. Huang, J. Sun and C. Chen, “Thermal Behaviour Analysis of Lithium-ion Battery at Elevated Temperature Using Deconvolution Method”, Applied Energy, Vol. 129, pp. 261-273 (2014),
https://doi.org/10.1016/j.apenergy.2014.04.092.
3. S. J. Harris, A. Timmons and W. J. Pitz, “A Combustion Chemistry Analysis of Carbonate Solvents Used in Li-ion Batteries”, Journal of Power Sources, Vol. 193, No. 2, pp. 855-858 (2009),
https://doi.org/10.1016/j.jpowsour.2009.04.030.
4. S. W. Kim, S. G. Park and E. J. Lee, “Assessment of the Explosion Risk during Lithium-ion Battery Fires”, Journal of Loss Prevention in the Process Industries, Vol. 80, pp. 104851(2022),
https://doi.org/10.1016/j.jlp.2022.104851.
5. S. G. Park, S. W. Kim and E. J. Lee, “Experimental Study on Fire Characteristics of Lithium-ion Battery using Cone Calorimeter”, Fire Science and Engineering, Vol. 35, No. 3, pp. 1-6 (2021),
https://doi.org/10.7731/KIFSE.cf8b2c73.
6. X. Liu, S. I. Stoliarov, M. Denlinger, A. Masias and K. Snyder, “Comprehensive Calorimetry of the Thermally-induced Failure of a Lithium Ion Battery”, Journal of Power Sources, Vol. 280, pp. 516-525 (2015),
https://doi.org/10.1016/j.jpowsour.2015.01.125.
7. B. Lei, W. Zhao, C. Ziebert, N. Uhlmann, M. Rohde and H. J. Seifert, “Experimental Analysis of Thermal Runaway in 1⇊Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter”, Batteries, Vol. 3, No. 2, pp. 14(2017),
https://doi.org/10.3390/batteries3020014.
8. P. J. Bugryniec, J. N. Davidson and F. B. Solomon, “Assessment of Thermal Runaway in Commercial Lithium Iron Phosphate Cells due to Overheating in an Oven Test”, Energy Procedia, Vol. 151, pp. 74-78 (2018),
https://doi.org/10.1016/j.egypro.2018.09.030.
9. H. Yang, G. V. Zhuang and P. N. Ross, Jr., “Thermal Stability of LiPF
6 Salt and Li-ion Battery Electrolytes Containing LiPF
6”, Journal of Power Sources, Vol. 161, No. 1, pp. 573-579 (2006),
https://doi.org/10.1016/j.jpowsour.2006.03.058.
10. Y. Fernandes, A. Bry and S. D. Persis, “Identification and Quantification of Gases Emitted during Abuse Tests by Overcharge of a Commercial Li-ion Battery”, Journal of Power Sources, Vol. 389, pp. 106-119 (2018),
https://doi.org/10.1016/j.jpowsour.2018.03.034.
11. T. D. Hatchard, D. D. MacNeil, A. Basu and J. R. Dahn, “Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells”, Journal of The Electrochemical Society, Vol. 148, No. 7, pp. A755(2001),
https://doi.org/10.1149/1.1377592.
13. I. Esho, K. Shah and A. Jain, “Measurements and Modeling to Determine the Critical Temperature for Preventing Thermal Runaway in Li-ion Cells”, Applied Thermal Engineering, Vol. 145, pp. 287-294 (2018),
https://doi.org/10.1016/j.applthermaleng.2018.09.016.
14. J. Anderson, F. Larsson, P. Andersson and B. E. Mellander, “Thermal Modeling of Fire Propagation in Lithium-ion Batteries”, “Proceedings of The 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV)”, Gothenburg, Sweden (2015).
15. X. Feng, L. Lu, M. Ouyang, J. Li and X. He, “A 3D Thermal Runaway Propagation Model for a Large Format Lithium Ion Battery Module”, Energy, Vol. 115, No. 1, pp. 194-208 (2016),
https://doi.org/10.1016/j.energy.2016.08.094.
16. H. J. Ko and E. J. Lee, “Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires”, Fire Science and Engineering, Vol. 33, No. 1, pp. 23-29 (2019),
https://doi.org/10.7731/KIFSE.2019.33.1.023.
17. Reaction Design, “CHEMKIN-PRO 19.0”, (2018).
18. C. V. Naik, W. J. Pitz, C. K. Westbrook, M. Sjöberg, J. E. Dec, J. Orme, H. J. Curran and J. M. Simmie, “Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine”, Journal of Fuels and Lubricants, Vol. 114, pp. 1381-1387 (2005).
20. V. Somandepalli, K. Marr and Q. Horn, “Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-ion Batteries”, SAE International Journal of Alternative Powertrains, Vol. 3, No. 1, pp. 98-104 (2014),
https://doi.org/10.4271/2014-01-1857.
21. M. N. Richard and J. R. Dahn, “Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental”, Journal of The Electrochemical Society, Vol. 146, No. 6, pp. 2068(1999),
https://doi.org/10.1149/1.1391893.
22. L. Zhao, I. Watanabe, T. Doi, S. Okada and J. Yamaki, “TG-MS Analysis of Solid Electrolyte Interphase (SEI) on Graphite Negative-electrode in Lithium-ion Batteries”, Journal of Power Sources, Vol. 161, No. 2, pp. 1275-1280 (2006),
https://doi.org/10.1016/j.jpowsour.2006.05.045.
23. H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani and M. Yamachi, “Degradation Mechanism of Alkyl Carbonate Solvents Used in Lithium-ion Cells during Initial Charging”, Journal of Power Sources, Vol. 68, No. 2, pp. 311-315 (1997),
https://doi.org/10.1016/S0378-7753(97)02635-9.
24. A. D. Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci and J. -M. Tarascon, “Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-ion Batteries”, Journal of the Electrochemical Society, Vol. 145, No. 2, pp. 472(1998),
https://doi.org/10.1149/1.1838287.
25. E. P. Roth, D. H. Doughty and J. Franklin, “DSC Investigation of Exothermic Reactions Occurring at Elevated Temperatures in Lithium-ion Anodes Containing PVDF-based Binders”, Journal of Power Sources, Vol. 134, No. 2, pp. 222-234 (2004),
https://doi.org/10.1016/j.jpowsour.2004.03.074.
26. A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler and et al, “Thermal-runaway Experiments on Consumer Li-ion Batteries with Metal-oxide and Olivin-type Cathodes”, Rsc Advances, Vol. 4, pp. 3633-3642 (2014),
https://doi.org/10.1039/C3RA45748F.
27. National Aeronautics and Space Administration, “An Analytica1 Study of the Hydrogen-air Reaction Mechanism with Application to Scramjet Combustion”, (1988).
28. E. L. Petersen, J. M. Hall, S. D. Smith, J. D. Vries, A. Amadio and M. W. Crofton, “Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures”, Turbo Expo:Power for LandSea, and Air, Vol. 2, pp. 367-379 (2005),
https://doi.org/10.1115/GT2005-68517.
29. S. K. Martha, O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miner and D. Aurbach, “On the Thermal Stability of Olivine Cathode Materials for Lithium-ion Batteries”, Journal of the Electrochemical Society, Vol. 158, No. 10, pp. A1115(2011),
https://doi.org/10.1149/1.3622849.