1. R. Zalosh, P. Gandhi and A. Barowy, “Lithium-ion Energy Storage Battery Explosion Incidents”, Journal of Loss Prevention in the Process Industries, Vol. 72, No. 1, pp. 104560(2021),
https://doi.org/10.1016/j.jlp.2021.104560.
2. H. J. Ko and E. J. Lee, “Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires”, Fire Science and Engineering, Vol. 33, No. 1, pp. 23-29 (2019),
https://doi.org/10.7731/KIFSE.2019.33.1.023.
3. Y. Fu, S. Lu, K. Li, C. Liu, X. Cheng and H. Zhang, “An Experimental Study on Burning Behaviors of 1⇊Lithium Ion Batteries Using a Cone Calorimeter”, Journal of Power Sources, Vol. 273, pp. 216-222 (2015),
https://doi.org/10.1016/j.jpowsour.2014.09.039.
4. P F. Huang, Q. S. Wang, K. Li, P. Ping and J. H. Sun, “The Combustion Behavior of Large Scale Lithium Titanate Battery”, Scientific Reports, Vol. 5, No. 1, pp. 7788(2015),
https://doi.org/10.1038/srep07788.
5. S. G. Park, S. W. Kim and E. J. Lee, “Experimental Study on Fire Characteristics of Lithium-ion Battery using Cone Calorimeter”, Fire Science and Engineering, Vol. 35, No. 3, pp. 1-6 (2021),
https://doi.org/10.7731/KIFSE.cf8b2c73.
6. S M. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S. J. Cho, K. B. Kim, K. Y. Chung and et al, “Structural Changes and Thermal Stability of Charged LiNi
xMn
yCo
zO
2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy”, ACS Appl Mater Interfaces, Vol. 6, No. 24, pp. 22594-22601 (2014),
https://doi.org/10.1021/am506712c.
7. H. J. Noh, S. Youn, C. S. Yoon and Y. K. Sun, “Comparison of the Structural and Electrochemical Properties of Layered Li[Ni
xCo
yMn
z]O
2 (x = 1/3. 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-ion Batteries”, Journal of Power Sources, Vol. 233, No. 1, pp. 121-130 (2013),
https://doi.org/10.1016/j.jpowsour.2013.01.063.
8. X L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. Sun, Y. L. Li and S. X. Lu, “Comparisons of Graphite and Spinel Li
1.33Ti
1.67O
4 as Anode Materials for Rechargeable Lithium-ion Batteries”, Electrochim Acta, Vol. 50, No. 20, pp. 4076-4081 (2005),
https://doi.org/10.1016/j.electacta.2005.01.034.
9. C. J. Orendorff, “The Role of Separators in Lithium-ion Cell Safety”, The Electrochemical Society Interface, Vol. 21, No. 2, pp. 61-65 (2012),
https://doi.org/10.1149/2.F07122if.
10. Q. Wang, L. Jiang, Y. Yu and J. Sun, “Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect”, Nano Energy, Vol. 55, No. 1, pp. 93-114 (2019),
https://doi.org/10.1016/j.nanoen.2018.10.035.
11. G G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq, J. P. Bertrand and G. Marlair, “In-depth Safety-focused Analysis of Solvents Used in Electrolytes for Large Scale Lithium Ion Batteries”, Physical Chemistry Chemical Physics, Vol. 23, No. 15, pp. 9145-9155 (2013),
https://doi.org/10.1039/C3CP51315G.
12. S. Chen, Z. Wang, J. Wang, X. Tong and W. Yan, “Lower Explosion Limit of the Vented Gases from Li-ion Batteries Thermal Runaway in High Temperature Condition”, Journal of Loss Prevention in the Process Industries, Vol. 63, No. 1, pp. 103992(2020),
https://doi.org/10.1016/j.jlp.2019.103992.
13. H. Li, Q. Duan, C. Zhao, Z. Huang and Q. Wang, “Experimental Investigation on the Thermal Runaway and its Propagation in the Large Format Battery Module with Li (Ni
1/3Co
1/3Mn
1/3)O
2 as Cathode”, Journal of Hazardous Materials, Vol. 375, No. 5, pp. 241-254 (2019),
https://doi.org/10.1016/j.jhazmat.2019.03.116.
14. S. W. Kim, S. G. Park and E. J. Lee, “Assessment of the Explosion Risk During Lithium-ion Battery Fires”, Journal of Loss Prevention in the Process Industries, Vol. 80, No. 1, pp. 104851(2022),
https://doi.org/10.1016/j.jlp.2022.104851.
15. Y. Wang, J. Jiang and J. Dahn, “The Reactivity of Delithiated Li (Ni
1/3Co
1/3Mn
1/3)O
2. Li (Ni
0.8Co
0.15Al
0.05) O
2 or LiCoO
2 with Non-aqueous Electrolyte”, Electrochemistry Communications, Vol. 9, No. 10, pp. 2534-2540 (2007),
https://doi.org/10.1016/j.elecom.2007.07.033.
16. X. Liu, S. I. Stoliarov, M. Denlinger, A. Masias and K. Snyder, “Comprehensive Calorimetry of the Thermally- induced Failure of a Lithium Ion Battery”, Journal of Power Sources, Vol. 280, No. 1, pp. 516-525 (2015),
https://doi.org/10.1016/j.jpowsour.2015.01.125.
17. X N. Feng, M. Fang, X. M. He, M. G. Ouyang, L. G. Lu, H. Wang and M. Zhang, “Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry”, Journal of Power Sources, Vol. 255, No. 1, pp. 294-301 (2014),
https://doi.org/10.1016/j.jpowsour.2014.01.005.
19. M. N. Richard and J. R. Dahn, “Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental”, Journal of The Electrochemical Society, Vol. 146, No. 6, pp. 2068-2077 (1999),
https://doi.org/10.1149/1.1391893.
20. P. Ping, Q. Wang, P. Huang, J. Sun and C. Chen, “Thermal Behaviour Analysis of Lithium-ion Battery at Elevated Temperature Using Deconvolution Method”, Applied Energy, Vol. 129, pp. 261-273 (2014),
https://doi.org/10.1016/j.apenergy.2014.04.092.
21. X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang and M. Zhang, “Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry”, Journal of Power Sources, Vol. 255, pp. 294-301 (2014),
https://doi.org/10.1016/j.jpowsour.2014.01.005.
22. H. Wang, A. Tang and K. Huang, “Oxygen Evolution in Overcharged Li
xNi
1/3Co
1/3Mn
1/3O
2 Electrode and Its Thermal Analysis Kinetics”, Chinese Journal of Chemistry, Vol. 29, No. 8, pp. 1583-1588 (2011),
https://doi.org/10.1002/cjoc.201180284.
23. F. Larsson, P. Andersson, P. Blomqvist and B. E. Mellander, “Toxic Fluoride Gas Emissions from Lithium-ion Battery Fires”, Scientific Reports, Vol. 7, No. 1, pp. 10018(2017),
https://doi.org/10.1038/s41598-017-09784-z.
24. X. Liu, D. Ren, H. Hsu, X. Feng, G. L. Xu, M. Zhuang, H. Gao, L. Lu and et al, “Thermal Runaway of Lithium-ion Batteries without Internal Short Circuit”, Joule, Vol. 2, No. 10, pp. 2047-2064 (2018),
https://doi.org/10.1016/j.joule.2018.06.015.
25. V. Somandepalli, K. Marr and Q. Horn, “Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-ion Batteries”, SAE International Journal of Alternative Powertrains, Vol. 3, No. 1, pp. 98-104 (2014),
https://doi.org/10.4271/2014-01-1857.