1. P Poizot and F Dolhem, ““Clean energy new deal for a sustainable world:from non-CO
2 generating energy sources ro greener electrochemical storage devices””, Energy Environ. Sci, Vol. 4, pp. 2003-2019 (2011),
https://doi.org/10.1039/C0EE00731E.
2. G Zubi, R. D Lopez, M Carvalho and G Pasaoglu, ““The lithium-ion battery:State of the art and future perspectives””, Renewable and sustainable energy reviews, Vol. 89, pp. 292-308 (2018),
https://doi.org/10.1016/j.rser.2018.03.002.
3. J. M Tarascon and M Armand, ““Issues and challenges facing rechargeable lithium batteries””, Nature, Vol. 414, pp. 359-367 (2001).
4. Y Fu, S Lu, K Li, C Liu, X Cheng and H Zhang, ““An experimental study on burning behaviors of 1⇊lithium ion batteries using a cone calorimeter””, Journal of Power Sources, Vol. 273, pp. 216-222 (2015),
https://doi.org/10.1016/j.jpowsour.2014.09.039.
5. P Ribiere, S Grugeon, M Morcrette, S Boyanov, S Laruellea and G Marlair, ““Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry””, Energy Environ. Sci, Vol. 5, pp. 5271-5280 (2012),
https://doi.org/10.1039/c1ee02218k.
6. D Ouyang, J Liu, M Chen and J Wang, ““Investigation into the Fire Hazards of Lithium-Ion Batteries under Overcharging””, Appl. Sci, Vol. 7, No. 12, pp. 1314(2017),
https://doi.org/10.3390/app7121314.
7. F Larsson, P Andersson, P Blomqvist, A Loren and B. E Mellander, ““Characteristics of lithium-ion batteries during fire tests””, Journal of Power Sources, Vol. 271, pp. 414-420 (2014),
https://doi.org/10.1016/j.jpowsour.2014.08.027.
8. M Chen, R Yuen and J Wang, ““An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries””, J. Therm. Anal. Calorim, Vol. 129, pp. 181-188 (2017),
https://doi.org/10.1007/s10973-017-6158-y.
9. F Larsson, P Andersson and B. E Mellander, ““Battery Aspects on Fires in Electrified Vehicles””, Proceedings of Third International Conference on Fire in Vehicles, pp. 209-220 (2014).
11. M Chen and et al, ““Experimental Study on the Combustion Characteristics of Primary Lithium Batteries Fire””, Fire Technology, Vol. 52, No. 2, pp. 365-385 (2016),
https://doi.org/10.1007/s10694-014-0450-1.
12. P Andersson, P Blomqvist, A Lorén and F Larsson, ““Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries””, Fire Mater, Vol. 40, No. 8, pp. 999-1015 (2016),
https://doi.org/10.1002/fam.2359.
13. X Liu, S. I Stoliarov, M Denlinger, A Masias and K Snyder, ““Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery””, Journal of Power Sources, Vol. 280, pp. 516-525 (2015),
https://doi.org/10.1016/j.jpowsour.2015.01.125.
14. X Liua, Z Wu, S. I Stoliarov, M Denlinger, A Masias and K Snyder, ““Heat release during thermally-induced failure of a lithium ion battery :Impact of cathode composition””, Fire Safety Journal, Vol. 85, pp. 10-22 (2016),
https://doi.org/10.1016/j.firesaf.2016.08.001.
15. R. N Walters and R. E Lyon, ““Measuring Energy Release of Lithium-ion Battery Failure Using a Bomb Calorimeter””, DOT/FAA/TC-15/40, FAA report (2016).
16. ISO 5660-1, Reaction to fire tests - Heat release, smoke production and mass loss rate - Part 1:Heat release rate(cone calorimeter method) and smoke production rate (dynamic measurement), (2015).
17. G. G Eshetu, S Grugeon, S Laruelle, S Boyanov, A Ledodq, J. P Betrand and G Marlair, ““In-depth safety- focused analysis of solvents used in electrolytes for large scale lithium ion batteries””, Physical chemistry chemical physics, Vol. 15, pp. 9145-9155 (2013),
https://doi.org/10.1039/c3cp51315g.