3. A. C Bwalya, N Bénichou and M. A Sultan, “Literature Review on Design Fires”, IRC-RR-137, NRC- CNRC, Available From:
https://doi.org/10.4224/20386293, accessed June 25, 2003.
4. B Baek, C. B Oh, E. J Lee and D. G Nam, “Application Study of Design Fire Curves for Liquid Pool Fires in a Compartment”, Fire Science and Engineering, Vol. 31, No. 4, pp. 43-51 (2017),
https://doi.org/10.7731/KIFSE.2017.31.4.043.
5. K McGrattan, S Hostikka, R McDermott, J Floyd, C Weinschenk and K Overholt, “Fire Dynamics Simulator Technical Reference Guide, Volume 1:Mathematical Model”, NIST Special Publication 1018-1, Sixth Edition, NIST, USA, (2016),
https://doi.org/10.6028/NIST.sp.1018.
6. K McGrattan, S Hostikka, R McDermott, J Floyd, C Weinschenk and K Overholt, “Fire Dynamics Simulator, User's Guide”, NIST Special Publication 1019, Sixth Edition, NIST, USA, (2004),
https://doi.org/10.6028/NIST.SP.1019.
7. U. S. NRC, “Cable Heat Release Ignition and Spread in Tray Installations during Fire (CHRISTIFIRE), Phase 1:Horizontal Trays”, NUREG/CR-7010, (2012).
8. S. Y Mun and C. H Hwang, “Experimental and Numerical Studies on Major Pyrolysis Properties of Flame Retardant PVC Cables Composed of Multiple Materials”, Materials, Vol. 13, No. 7, Paper Number 1712 (2020),
https://doi.org/10.3390/ma13071712.
11. I. T Leventon, J Li and S. I Stoliarov, “A Flame Spread Simulation Based on a Comprehensive Solid Pyrolysis Model Coupled with a Detailed Empirical Flame Structure Representation”, Combustion and Flame, Vol. 162, No. 10, pp. 3884-3895 (2015),
https://doi.org/10.1016/j.combustflame.2015.07.025.
12. Y Pizzo, C Lallemand, A Kacem, A Kaiss, J Gerardin, Z Acem, P Boulet and B Porterie, “Steady and Transient Pyrolysis of Thick Clear PMMA Slabs”, Combustion and Flame, Vol. 162, No. 1, pp. 226-236 (2015),
https://doi.org/10.1016/j.combustflame.2014.07.004.
14. A Matala, S Hostikka and J Mangs, “Estimation of Pyrolysis Model Parameters for Solid Materials using Thermogravimetric Data”, Fire Safety Science, Vol. 9, pp. 1213-1223 (2009),
https://doi.org/10.3801/IAFSS.FSS.9-1213.
15. K Moinuddin, Q. S Razzaque and A Thomas, “Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties”, Polymers, Vol. 12, No. 9, Paper Number 2075 (2020),
https://doi.org/10.3390/polym12092075.
16. S Vyazovkin, A. K Burnham, J. M Criado, L. A Pérez-Maqueda, C Popescu and N Sbirrazzuoli, “ICTAC Kinetic Committe Recommendations for Performing Kinetic Computations on Thermal Analysis Data”, Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19 (2011),
https://doi.org/10.1016/j.tca.2011.03.034.
17. H. J Park, “Evaluation of the Activation Energy of Chlorinated Poly Vinyl Chloride (CPVC) Using Thermogravimetric Analysis”, Fire Science and Engineering, Vol. 33, No. 1, pp. 1-6 (2019),
https://doi.org/10.7731/KIFSE.2019.33.1.001.
18. H. G Lee, U. H Yun and J. G Kim, “Improving the Activation Energy Reliability of Insulting Materials Using Non-Isothermal Thermogravimetric Analysis”, The Transactions of the Korean Institute of Electrical Engineers, Vol. 70, No. 10, pp. 1481-1487 (2021),
https://doi.org/10.5370/KIEE.2021.70.10.1481.
21. T Ozawa, “A New Method of Analyzing Thermogravimetric Data”, Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, pp. 1881-1886 (1965),
https://doi.org/10.1246/bcsj.38.1881.
22. J. H Flynn and L. A Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, Vol. 70A, No. 6, pp. 487-523 (1966),
https://doi.org/10.6028/jres.070A.043.
23. R. E Lyon, N Safronava, J Senese and S. I Stoliarov, “Thermokinetic Model of Sample Response in Nonisothermal Analysis”, Thermochimca Acta, Vol. 297, No. 1-2, pp. 82-89 (2012),
https://doi.org/10.1016/j.tca.2012.06.034.
26. J. H Lee, “Experimental Studies on the Burning Characteristics According to Curing Time of Spray Polyurethane Foam”, Master's Thesis, In Dept. of Fire and Disaster Prevention, Daejeon University, (2022).