1. R. Bispo, F. G. Vieira, N. Bachir, P. Espadinha-Cruz, J. P. Lopes, A. Penha, F. J. Marques and A. Grilo, “Spatial Modelling and Mapping of Urban Fire Occurrence in Portugal”, Fire Safety Journal, Vol. 138, pp. 103802(2023),
https://doi.org/10.1016/j.firesaf.2023.103802.
3. D. H. Lim, W. J. Na, W. H. Hong and Y. H. Bae, “Development of a Fire Prediction Model at the Urban Planning Stage:Ordinary Least Squares Regression Analysis of the Area of Urban Land Use and Fire Damage Data in South Korea”, Fire Safety Journal, Vol. 136, pp. 103761(2023),
https://doi.org/10.1016/j.firesaf.2023.103761.
5. M. İ. Gürsoy, O. Orhan and S. Tekin, “Creation of Wildfire Susceptibility Maps in the Mediterranean Region (Turkey) Using Convolutional Neural Networks and Multilayer Perceptron Techniques”, Forest Ecology and Management, Vol. 538, pp. 121006(2023),
https://doi.org/10.1016/j.foreco.2023.121006.
6. J. H. Roh, S. H. Min and M. S. Kong, “Analysis of Fire Prediction Performance of Image Classification Models Based on Convolutional Neural Network”, Fire Science and Engineering, Vol. 36, No. 6, pp. 70-77 (2022),
https://doi.org/10.7731/KIFSE.9e906e7a.
7. J. N. S. Rubí, P. H. P. Carvalho and P. R. L. Gondim, “Application of Machine Learning Models in the Behavioral Study of Forest Fires in the Brazilian Federal District Region”, Engineering Applications of Artificial Intelligence, Vol. 118, pp. 105649(2023),
https://doi.org/10.1016/j.engappai.2022.105649.
8. S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi and B. Sobhani, “Building Energy Consumption Prediction Using Multilayer Perceptron Neural Network-assisted Models;Comparison of Different Optimization Algorithms”, Energy, Vol. 282, pp. 128446(2023),
https://doi.org/10.1016/j.energy.2023.128446.
9. Y. J. Xu, F. Li and A. Asgari, “Prediction and Optimization of Heating and Cooling Loads in a Residential Building Based on Multi-layer Perceptron Neural Network and Different Optimization Algorithms”, Energy, Vol. 240, pp. 122692(2022),
https://doi.org/10.1016/j.energy.2021.122692.
10. P. Z. Wei, J. H. Liu, S. R. Ye, Z. M. Sha and F. X. Hu, “Real-time GNSS Tropospheric Parameter Prediction of Extreme Rainfall Events in China Based on WRF Multi-source Data Assimilation”, Advances in Space Research, Vol. 73, No. 3, pp. 1611-1629 (2023),
https://doi.org/10.1016/j.asr.2023.11.044.
11. D. Zhang and B. Z. Niu, “Leveraging Online Reviews for Hotel Demand Forecasting:A Deep Learning Approach”, Information Processing &Management, Vol. 61, No. 1, pp. 103527(2024),
https://doi.org/10.1016/j.ipm.2023.103527.
12. I. S. Ahmad, A. A. Bakar and M. R. Yaakub, “Movie Revenue Prediction Based on Purchase Intention Mining Using YouTube Trailer Reviews”, Information Processing &Management, Vol. 57, No. 5, pp. 102278(2020),
https://doi.org/10.1016/j.ipm.2020.102278.
13. C. G. Huo, S. T. Ma and X. Z. Liu, “Hotness Prediction of Scientific Topics Based on a Bibliographic Knowledge Graph”, Information Processing &Management, Vol. 59, No. 4, pp. 102980(2022),
https://doi.org/10.1016/j.ipm.2022.102980.
14. Z. T. Liang, J. Mao, K. Lu, Z. C. Ba and G. Li, “Combining Deep Neural Network and Bibliometric Indicator for Emerging Research Topic Prediction”, Information Processing &Management, Vol. 58, No. 5, pp. 102611(2021),
https://doi.org/10.1016/j.ipm.2021.102611.
15. S. J. Huang, J. W. Ji, Y. Wang, W. J. Li and Y. C. Zheng, “Development and Validation of a Soft Voting-based Model for Urban Fire Risk Prediction”, International Journal of Disaster Risk Reduction, Vol. 101, pp. 104224(2024),
https://doi.org/10.1016/j.ijdrr.2023.104224.
16. S. Bar, B. R. Parida, A. C. Pandey, B. U. Shankar, P. Kumar, S. K. Panda and M. D. Behera, “Modeling and Prediction of Fire Occurrences Along an Elevational Gradient in Western Himalayas”, Applied Geography, Vol. 151, pp. 102867(2023),
https://doi.org/10.1016/j.apgeog.2022.102867.
17. R. S. Bhadoria, M. K. Pandey and P. Kundu, “RVFR:Random Vector Forest Regression Model for Integrated &Enhanced Approach in Forest Fires Predictions”, Ecological Informatics, Vol. 66, pp. 101471(2021),
https://doi.org/10.1016/j.ecoinf.2021.101471.