1. S. H. Bang, “Changes in Soil Properties During Smoldering Fire Caused by Wildfire”, Fire Science and Engineering, Vol. 38, No. 4, pp. 55-59 (2024),
https://doi.org/10.7731/KIFSE.2e5230d3.
2. N. K. Park and S. H. Ham, “A Study of Institutional Improvements for Responding to Electric Vehicle Fires:Focusing on the Case of Seoul”, Journal of the Society of Disaster Information, Vol. 20, No. 1, pp. 32-39 (2024),
https://doi.org/10.15683/kosdi.2024.3.31.032.
3. H. J. Kim, G. Y. Shin, B. H. Woo, N. K. Koo, K. S. Jang and K. W. Lee, “A Study on Forest Fires Prediction and Detection Algorithm using Intelligent Context-awareness Sensor”, Journal of the Korea Institute of Information and Communication Engineering, Vol. 19, No. 6, pp. 1506-1514 (2015),
https://doi.org/10.6109/jkiice.2015.19.6.1506.
4. G. S. Son and S. H. So, “A Study on Fire Alarm Test of IoT Multi-Fire Detector Combined Smoke/CO and Smoke/Temperature Sensor”, Journal of the Society of Disaster Information, Vol. 17, No. 2, pp. 236-244 (2021),
https://doi.org/10.15683/kosdi.2021.6.30.236.
5. K. S. Kang, O. S. Kwon, W H. Cho, H. Y. Kim, S. U. Chae and J. S. You, “Initial Fire Detection Method for Intelligent CCTV Using Deep Learning Technology”, Fire Science and Engineering, Vol. 38, No. 2, pp. 9-16 (2024),
https://doi.org/10.7731/KIFSE.7e1c0745.
6. S. J. Moon, “A Study on the Industrial Complex Disaster Surveillance and Monitoring System Using Drones”, The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 19, No. 1, pp. 233-240 (2024),
https://doi.org/10.13067/JKIECS.2024.19.1.233.
7. K. Avazov, M. Mukhiddinov, F. Mukhiddinov and Y. I. Cho, “Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach”, Electronics, Vol. 11, No. 1, (2022),
https://doi.org/10.3390/electronics11010073.
8. F. G. Fernández, L. Martins, R. V. Almeida, H. Gamboa and P. Vieira, “A Deep Learning Based Object Identification System for Forest Fire Detection”, Fire, Vol. 4, No. 4, (2021),
https://doi.org/10.3390/fire4040075.
9. H. J. Kwon, B. H. Lee and H. Y. Jung, “Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials”, Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 37, No. 3, pp. 261-273 (2024),
https://doi.org/10.4313/JKEM.2024.37.3.4.
10. A. Namburu, P. Selvaraj, S. Mohan, S. Ragavanantham and E. T. Eldin, “Forest Fire Identification in UAV Imagery Using X-MobileNet”, Electronics, Vol. 12, No. 3, (2023),
https://doi.org/10.3390/electronics12030733.
11. H. Zheng, J. Duan, Y. Dong and Y. Liu, “Real-time Fire Detection Algorithms Running on Small Embedded Devices based on MobileNetV3 and YOLOv4”, Fire Ecology, Vol. 19, No. 1, (2023),
https://doi.org/10.1186/s42408-023-00189-0.
12. X. Geng, Y. Su, X. Cao, H. Li and L. Liu, “YOLOFM:An Improved Fire and Smoke Object Detection Algorithm based on YOLOv5n”, Scientific Reports, Vol. 14, No. 1, (2024),
https://doi.org/10.1038/s41598-024-55232-0.
13. Y. Li, J. Shang, M. Yan, B. Ding and J. Zhong, “Real-Time Early Indoor Fire Detection and Localization on Embedded Platforms with Fully Convolutional One-Stage Object Detection”, Sustainability, Vol. 15, No. 3, (2023),
https://doi.org/10.3390/su15031794.
14. H. Y. Jung, S. G. Choi and B. H. Lee, “Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis”, Electronics, Vol. 12, No. 3, (2023),
https://doi.org/10.3390/electronics12030480.
15. M. T. Ahad, Y. Li, B. Song and T. Bhuiyan, “Comparison of CNN-based Deep Learning Architectures for Rice Diseases Classification”, Artificial Intelligence in Agriculture, Vol. 9, pp. 22-35 (2023),
https://doi.org/10.1016/j.aiia.2023.07.001.
16. H. Huang, R. Du, Z. Wang, X. Li and G. Yuan, “A Malicious Code Detection Method Based on Stacked Depthwise Separable Convolutions and Attention Mechanism”, Sensors, Vol. 23, No. 16, (2023),
https://doi.org/10.3390/s23167084.
17. J. Jang, C. Quan, H. D. Lee and U. Kang, “Falcon:Lightweight and Accurate Convolution based on Depthwise Separable Convolution”, Knowledge and Information Systems, Vol. 65, pp. 2225-2249 (2023),
https://doi.org/10.1007/s10115-022-01818-x.
19. A. Theodosiou and R. C. Robert, “Artificial Intelligence, Machine Learning and Deep Learning:Potential Resources for the Infection Clinician”, Journal of Infection, Vol. 87, No. 4, pp. 287-294 (2023),
https://doi.org/10.1016/j.jinf.2023.07.006.
20. J. H. Lee, K. S. Jeong and H. Y. Jung, “Development of a Forest Fire Detection System Using a Drone-based Convolutional Neural Network Model”, International Journal of Fire Science and Engineering, Vol. 37, No. 2, pp. 30-40 (2023),
https://doi.org/10.7731/KIFSE.26686d3f.