1. Korea Forest Service (KFS), Comprehensive Measures Forest Fire Prevention in South Korea, (2019).
2. J. D. Philip, D. Dougal, L. B. Craig, W. W. Douglas, L. P. Richard, J. R. Hall, Jr.. and H. M. Watts, Jr.., “SFPE Handbook of Fire Protection Engineering”, 3rd edit.., (2005).
3. H. C. Kung, “A Mathematical Model of Wood Pyrolysis”, Combustion and Flame, Vol. 18, pp. 185-195 (1972).
4. K. M. Bryden, K. W. Ragland and C. J. Rutland, “Modeling thermally thick pyrolysis of wood”, Biomass and Bioenergy, Vol. 22, pp. 41-53 (2002).
5. C. D. Blasi, “Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels”, Progress in Energy and Combustion Science, Vol. 19, pp. 71-104 (1993).
6. ASTM D4442-92, Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials (2003).
7. G. Wypych, “3rd Edition PVC Degradation and Stabilization”, pp. 241-285 (2015).
8. C. Anand, B. Shotorban, S. Mahalingam, S. McAllister and R. Weise, “Physics-Based Modeling of Live Wildland FuelIgnition Experiments in the FIST Apparatus”, Combustion Science and Technology, Vol. 189, No. 9, pp. 1551-1570 (2017).
9. W. Mell, A. Maranghides, R. McDermott and S. Manzello, “Numerical Simulation and Experiments of Burning Douglas Fir Trees”, Combustion and Flame, Vol. 156, pp. 2023-2041 (2009).
10. G. R. Boarnand, “Polymethylmethacrylate Combustion in a Narrow Channel Apparatus Simulating a Microgravity Environment”, University of San Diego State, “Master’s Thesis”, (2015).
11. V. Babrauskas, “Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science”, Fire Science Publishers (2003).
12. B. Schartel and T. R. Hull, “Development of Fire-Retarded Materials-Interpretation of Cone Calorimeter Data”, Fire and Materials, Vol. 31, pp. 327-354 (2007).
13. J. Hietanienmi, S Hostikkam and J Vaari, “FDS Simulation of Fire Spread-Comparison of Model Results with Experimental Data”, VTT Working Papers, Vol. 4, (2004).