1. V. V. Rao, R. Parameshwaran and V. V. Ram, “PCM-mortar based Construction Materials for Energy Efficient Buildings:A Review on Research Trends”, Energy and Buildings, Vol. 158, pp. 95-122 (2018),
https://doi.org/10.1016/j.enbuild.2017.09.098.
2. G. Mavromatidis, K. Orehounig, L. A. Bollinger, M. Hohmann, J. F. Marquant, S. Miglani, B. Morvaj, P. Murray and et al, “Ten Questions concerning Modeling of Distributed Multi-energy Systems”, Building and Environment, Vol. 165, pp. 106372(2019),
https://doi.org/10.1016/j.buildenv.2019.106372.
3. M. O. Yoon, “Report on Fire Analysis and Alternative Solutions of the SEA LAND Recreational Assembly Facility Fire at Hwasung. Kyungkido”, Fire Science and Engineering, Vol. 13, No. 4, pp. 57-60 (1999).
4. E. P. Lee, “Problems and Measures to Prevent Recurrence of Cold Storage Fire”, Journal of the Architectural Institute of Korea Planning &Design, Vol. 24, No. 12, pp. 39-46 (2008).
5. Y. J. Kwon, B. H. Lee, Y. J. Choi and Y. J. Lee, “Overview of the Fire White Paper at Jecheon Sports Center and Analysis of Major Problems”, Proceedings of 2022 Spring Annual Conference, Korean Institute of Fire Science &Engineering, pp. 87(2022).
6. G. W. Yeom, “A Study on the Policy Measures for the Prevention of Large Fire Accidents - Focused on Fire Accidents at Icheon Logistics Warehouse”, Law Review, Vol. 20, No. 2, pp. 399-419 (2020).
7. Ministry of Land, Infrastructure and Transport, “Rules on Recognition and Management of Building Materials and Quality”, (2022).
8. D. S. W. Pau, C. M. Fleischmann, M. J. Spearpoint and K. Y. Li, “Determination of Kinetic Properties of Polyurethane Foam Decomposition for Pyrolysis Modelling”, Journal of Fire Sciences, Vol. 31, No. 4, pp. 356-384 (2013),
https://doi.org/10.1177/0734904113475858.
9. A. Li, W. Zhang, J. Zhang, Y. Ding and R. Zhou, “Pyrolysis Kinetic Properties of Thermal Insulation Waste Extruded Polystyrene by Multiple Thermal Analysis Methods”, Materials, Vol. 13, No. 24, pp. 5595(2020),
https://doi.org/10.3390/ma13245595.
10. Md D. Hossain, Md. K. Hassan, S. Saha, A. C. Y. Yuen, C. Wang, L. George and R. Wuhrer, “Thermal and Pyrolysis Kinetics Analysis of Glass Wool and XPS Insulation Materials Used in Hige-Rise Buildings”, Fire, Vol. 6, No. 6, pp. 231(2023),
https://doi.org/10.3390/fire6060231.
11. W. Zhang, J. Zhang, Y. Ding, Q. He, K. Lu and H. Chen, “Pyrolysis Kinetics and Reaction Mechanism of Expandable Polystyrene by Multiple Kinetics Methods”, Journal of Cleaner Production, Vol. 285, pp. 125042(2021),
https://doi.org/10.1016/j.jclepro.2020.125042.
12. X. Ni, Z. Wu, W. Zhang, K. Lu, Y. Ding and S. Mao, “Energy Utilization of Building Insulation Waste Expanded Polystyrene:Pyrolysis Kinetic Estimation by a New Comprehensive Method”, Polymers, Vol. 12, No. 8, pp. 1744(2020),
https://doi.org/10.3390/polym12081744.
13. K. Prasad, R. Kramer, N. Marsh, M. Nyden, T. Ohlemiller and M. Zammarano, “Numerical Simulation of Fire Spread on Polyurethane Foam Slabs”, Proceedings of the 11th International Conference”, Fire and Materials, pp. 697-708 (2009).
14. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli, “ICTAC Kinetic Committe Recommendations for Performing Kinetic Computations on Thermal Analysis Data”, Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19 (2011),
https://doi.org/10.1016/j.tca.2011.03.034.
15. D. W. Kim, J. M. Lee and J. S. Kim, “Study on the Pyrolysis Kinetics of RDF (Refuse Derived Furel) with Thermogravimetric Analysis”, Korean Chemical Engineering Research, Vol. 47, No. 6, pp. 676-682 (2009).
16. H. J. Park, “Evaluation of the Activation Energy of Chlorinated Poly Vinyl Chloride (CPVC) Using Thermogravimetric Analysis”, Fire Science and Engineering, Vol. 33, No. 1, pp. 1-6 (2019),
https://doi.org/10.7731/KIFSE.2019.33.1.001.
17. H. G. Lee, U. H. Yun and J. G. Kim, “Improving the Activation Energy Reliability of Insulating Materials Using Non-Isothermal Thermogravimetric Analysis”, The Transactions of the Korean Institute of Electrical Engineers, Vol. 70, No. 10, pp. 1481-1487 (2021),
https://doi.org/10.5370/KIEE.2021.70.10.1481.
20. T. Ozawa, “A New Method of Analyzing Thermogravimetric Data”, Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, pp. 1881-1886 (1965),
https://doi.org/10.1246/bcsj.38.1881.
21. J. H. Flynn and L. A. Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards - A. Physics and Chemistry, Vol. 70A, No. 6, pp. 487-523 (1966),
https://doi.org/10.6028/jres.070A.043.
22. M. J. Starink, “The Determination of Activation Energy from Linear Heating Rate Experiments:A Comparison of the Accuracy of Isoconversion Methods”, Thermochimica Acta, Vol. 404, No. 1-2, pp. 163-176 (2003),
https://doi.org/10.1016/S0040-6031(03)00144-8.
24. M. E. Brown, “Introduction to Thermal Analysis”, (2001).
25. ISO 11358-1, “Plastics - Thermogravimetry (TG) of Polymers - Part 1:General Principles”, (2022).
27. W. Zhang, J. Jia, Y. Ding, G. Jiang, L. Sun and K. Lu, “Effects of Heating Rate on Thermal Degradation Behavior and Kinetics of Representative Thermoplastic Wastes”, Journal of Environmental Management, Vol. 314, pp. 115071(2022),
https://doi.org/10.1016/j.jenvman.2022.115071.
28. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, “Fire Dynamics Simulator Technical Reference Guide, Volume 1:Mathematical Model”, “NIST Special Publication 1018-1”, Sixth Edition., NIST, USA (2016),
https://doi.org/10.6028/NIST.sp.1018.
29. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, “Fire Dynamics Simulator, User's Guide”, “NIST Special Publication 1019”, Sixth Edition., NIST, USA (2013),
https://doi.org/10.6028/NIST.SP.1019.