1. H. S Lim, I. H Kim and M. S Kim, “Cable Functional Failure Time Evaluation for a Main Control Room Fire using Fire Dynamic Simulator”, Fire Science and Engineering, Vol. 30, No. 3, pp. 79-85 (2016),
https://doi.org/10.7731/KIFSE.2016.30.3.079.
2. H. S Lim, Y. K Bae and M. G Chi, “Cable Functional Failure Temperature Evaluation of Cable Exposed to the Fire of Nuclear Power Plant”, Fire Science and Engineering, Vol. 26, No. 1, pp. 10-15 (2012),
https://doi.org/10.7731/KIFSE.2012.26.1.010.
3. IAEA, “Experience Gained from Fires in Nuclear Power Plants:Lessons Learned”, IAEA-TECDOC-1421, (2004).
4. M Klauck, G Nobrega, E. -A Reinecke, A Bentaib, L Maas, N Chaumeix and H. -J Allelein, “Experimental Investigation on the Impact of Cable Fire Products From Flame-retardant Cables on Catalysts used in Passive Auto-catalytic Recombinerst”, Journal of Progress in Nuclear Energy, Vol. 152, Vol. 104365, (2022),
https://doi.org/10.1016/j.pnucene.2022.104365.
5. S Lee and S Min, “Study of Combustion Characteristics of Cables inside a Common Duct by Calorimeter Test”, Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 3, pp. 119-125 (2022),
https://doi.org/10.9798/KOSHAM.2022.22.3.119.
6. U. S. NRC and EPRI, “Nuclear Power Plant Fire Modeling Analysis Guidelines”, NUREG-1934 and EPRI 1023259, Finial Report, (2012).
7. U. S. NRC and EPRI, “Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications”, NUREG-1824 and EPRI 1011999, Finial Report, (2007).
8. U. S. NRC, “Cable Heat Release Ignition and Spread in Tray Installations during Fire (CHRISTIFIRE), Phase 1:Horizontal Trays”, NUREG/CR-7010, (2012).
9. S. Y Mun and C. H Hwang, “Experimental and Numerical Studies on Major Pyrolysis Properties of Flame Retardant PVC Cables Composed of Multiple Materials”, Materials, Vol. 13, Paper Number 1712 (2020),
https://doi.org/10.3390/ma13071712.
10. I. T Leventon, J Li and S. A Stoliarov, “A Flame Spread Simulation Based on a Comprehensive Solid Pyrolysis Model Coupled with a Detailed Empirical Flame Structure Representation”, Combustion and Flame, Vol. 162, No. 10, pp. 3884-3895 (2015),
https://doi.org/10.1016/j.combustflame.2015.07.025.
11. Y Pizzo, C Lallemand, A Kacem, A Kaiss, J Gerardin, Z Acem, P Boulet and B Porterie, “Steady and Transient Pyrolysis of Thick Clear PMMA Slabs”, Combustion and Flame, Vol. 162, No. 1, pp. 226-236 (2015),
https://doi.org/10.1016/j.combustflame.2014.07.004.
12. A Matala and S Hostikka, “Pyrolysis Modelling of PVC Cable Materials, Proceedings of the International Symposium”, Proceedings of the 10th International Symposium, International Association for Fire Safety Science (IAFSS), pp. 917-930 (2011),
https://doi.org/10.3801/IAFSS.FSS.10-917.
14. A Matala, S Hostikka and J Mangs, “Estimation of Pyrolysis Model Parameters for Solid Materials using Thermogravimetric Data”, Fire Safety Science, Vol. 9, pp. 1213-1223 (2009),
https://doi.org/10.3801/IAFSS.FSS.9-1213.
15. H. J Park, “Evaluation of the Activation Energy of Chlorinated Poly Vinyl Chloride (CPVC) Using Thermogravimetric Analysis”, Fire Science and Engineering, Vol. 33, No. 1, pp. 1-6 (2019),
https://doi.org/10.7731/KIFSE.2019.33.1.001.
16. H. G Lee, U. H Yun and J. G Kim, “Improving the Activation Energy Reliability of Insulting Materials Using Non-Isothermal Thermogravimetric Analysis”, The Transactions of the Korean Institute of Electrical Engineers, Vol. 70, No. 10, pp. 1481-1487 (2021),
https://doi.org/10.5370/KIEE.2021.70.10.1481.
20. T Ozawa, “A New Method of Analyzing Thermogravimetric Data”, Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, pp. 1881-1886 (1965),
https://doi.org/10.1246/bcsj.38.1881.
21. J. H Flynn and L. A Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, Vol. 70A, No. 6, pp. 487-523 (1966),
https://doi.org/10.6028/jres.070A.043.
22. IEEE-383, “IEEE Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations”, (1974).
23. K Moinuddin, Q. S Razzaque and A Thomas, “Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties”, Polymers, Vol. 12, Paper Number 2075 (2020),
https://doi.org/10.3390/polym12092075.
24. S Vyazovkin, A. K Burnham, J. M Criado, L. A Pérez-Maqueda, C Popescu and N Sbirrazzuoli, “ICTAC Kinetic Committe Recommendations for Performing Kinetic Computations on Thermal Analysis Data”, Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19 (2011),
https://doi.org/10.1016/j.tca.2011.03.034.
25. K McGrattan, S Hostikka, R McDermott, J Floyd, C Weinschenk and K Overholt, “Fire Dynamics Simulator Technical Reference Guide, Volume 1:Mathematical Model”, NIST Special Publication 1018-1, Sixth Edition, NIST, USA, (2016),
https://doi.org/10.6028/NIST.sp.1018.
26. K McGrattan, S Hostikka, R McDermott, J Floyd, C Weinschenk and K Overholt, “Fire Dynamics Simulator, User's Guide”, NIST Special Publication 1019, Sixth Edition, NIST, USA, (2004),
https://doi.org/10.6028/NIST.SP.1019.
29. T. K Hong, J. W Lee and S. H Park, “Influences of Changes in the Thermal Properties on Pyrolysis of Solid Combustibles”, Fire Science and Engineering, Vol. 31, No. 3, pp. 41-48 (2017),
https://doi.org/10.7731/KIFSE.2017.31.3.041.